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The influence of the coupling between strain rate and temperature becomes domineering in the nanoscale beam. In
this work, the free vibration of nanoscale beam resonators is analysed using Green and Naghdis theorem under the
two-temperature model (2TGNIII). The influence of two-temperature parameters in a nanoscale beam is studied for
beams under simply supported conditions. Exact expressions for frequency shift and the thermoelastic damping
have been derived in the resonator, and calculation outcomes have been presented graphically with respect to
frequency shift, natural frequency, and thermoelastic damping. The scale of length and thickness for a nanobeam
equal to 15× 10−9 m and equal to 1.3× 10−12 s for time.

1. INTRODUCTION
Many attempts have been made to study the elastic proper-

ties of nanostructured materials by atomistic simulations. Diao
et al.1 investigated the influence of free surface on the body
and elastic properties of gold nanowires using atomic emula-
tions. Modelling and emulation of thermoelastic damping is a
subject of repeated attention in the nanomechanics community
and nanoengineering community, one most encouraged by na-
noelectromechanical advancement system (NEMS) technolo-
gies. The systems of Nanoelectromechanical, or NEMS, reach
quite high essential frequencies of procedure, especially when
one considers their miniature size and small force constants.
Such mechanical devices of high frequencies have many sig-
nificant applications, among which are scanning probe micro-
scopes, mechanical signal processing, and ultrasensitive mass
detection.

Lord and Shulman2 extended the couple thermoelastic the-
ory. Green and Lindsay3 included the thermal relaxation times
in constitutive equations. The counterparts of our problems
in the context of theories of thermoelastic theory were consid-
ered by using numerical and analytical approaches.4–9 Green
and Naghdi10, 11 established GNII and GNIII generalized ther-
moelastic models, which based the replacing of usual entropy
inequality alongside the entropy equality. In recent years, var-
ious problems have been taken into account using the Green
and Naghdi models.12–26

Thermoelasticity using two-temperature modelling is one
of the unconventional thermoelastic models of elastic solids.
Thermal dependence is the main variance from this theorem
compared to classical theory. Chen et al.27–29 established a the-
orem of thermal conduction in deformable bodies, which based
on two featured temperatures: thermodynamic and conductive.
The variance between these two temperatures is proportionate
to the thermal supply for time independent cases. For time-
dependent problems and problems of waves propagation in
particular, the two temperatures are mostly different in cases
of the presence and absence of the thermal input. Youssef30

presented the generalized thermoelastic theory under two-
temperature by using Fourier law to the field equations. El-
Karamany and Ezzat31 introduced the two-temperature Green-
Naghdi thermoelasticity models. Abbas et al.32–34 presented
various problems based on the two-temperature thermoelastic
model using numerical and analytical methods.

Due to their numerous significant technological applica-

Figure 1. Schematic illustration of the beam setup.

tions, nanomechanical resonators have attracted considerable
attention. The processes of vibration and heat transfer have
been studied by many researchers. Honsten et al.35 predicted
that the inner friction in 50-nm scale silicon-based MEMS
structures is strong when subjected to thermoelastic damping.
Nayfeh and Younis36–39 presented analytical expressions for
the quality factor of microplates of general shapes subjected
to thermoelastic damping. Rezazadeh et al40 used the modi-
fied couple stress model to study the thermoelastic damping in
a microbeam resonator. Sun et al.41 investigated thermoelastic
damping in microbeam resonators. Elsibai and Youssef42 ap-
plied the state-space method to study the vibration of the gold
nanobeam due to ramp-type heating under Green and Naghdis
type II model. Sharma43 investigated the frequency shift
and thermoelastic damping in both microscale and nanoscale
anisotropic resonators. Grover and Sharma44, 45 studied the ef-
fect of relaxation time for thermoelastic vibration on MEMS
and NEMS with voids.

This paper investigates the free vibrations of a nanobeam
resonator in the context of the Green and Naghdi theory with
two-temperature (2TGNIII). The impact of two-temperature
parameters in the natural frequency, frequency shift, and the
thermoelastic damping have been studied and are graphically
represented.

2. FORMULATIONS OF THE PROBLEM

We consider the theoretical analysis of small flexural deflec-
tion of an isotropic, homogenous heat conductor, thermoelastic
resonator by using the Cartesian coordinate system oxyz for
the temperature increment T (x, y, z, t) and the vector of dis-
placement u(x, y, z, t) = (u, v, w), which have the dimension
thickness h (−h2 ≤ z ≤ h

2 ), the width b (− b
2 ≤ y ≤ b

2 ), and
the length L (0 ≤ x ≤ L), as in Fig. 1. In short, any plane
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cross-section that is initially perpendicular to axis of beam re-
mains plane and perpendicular to the neutral surface during
bending. So, the components of displacement can be expressed
by:

u = −z ∂w
∂x

, v = 0, w(x, y, z, t) = w(x, t). (1)

Then, the motion equation in the absence of pressures on the
lower and the upper surface of the beam is given by46:

∂2M

∂x2
+ ρA

∂2w

∂t2
= 0; (2)

where ρ is the density of the medium, t is the time, A = bh
is the area of cross-section, and M is the flexural moment of
cross-section of beam.

M(x, t) = ;

= −
∫ h

2

−h
2

∫ b
2

− b
2

(−(λ+ 2µ)
∂2w

∂x2
− γT )z∂z∂y = ;

= (λ+ 2µ)I
∂2w

∂x2
+ γMT ; (3)

where I = bh3

12 is the moment of inertia of the cross-section,
λ, µ are the Lame’s constants, T = T ∗ − T0 is the thermody-
namic temperature deviation from the reference temperature
T0, γ = (2λ+3µ)αt and αt is the coefficient of linear thermal
expansion, and MT is the beam thermal moment which takes
the form:

MT =

∫ h
2

−h
2

bTz∂z. (4)

The equation of heat conduction can be written by:

K∗(
∂2ϕ

∂x2
+
∂2ϕ

∂z2
) +K(

∂3ϕ

∂t∂x2
+

∂3ϕ

∂t∂z2
) = ;

=
∂2

∂t2
(ρceT − γT0z

∂2w

∂x2
); (5)

where K is the thermal conductivity, K∗ is the material con-
stant characteristic of the theory, ϕ = ϕ∗−T0 is the conductive
temperature deviation from the reference temperature T0, and
ce is the specific heat at constant strain. The relation between
the conductive and thermodynamic temperatures is given by31:

T = ϕ− α(∂
2ϕ

∂x2
+
∂2ϕ

∂z2
); (6)

where α > 0 is the two-temperature parameter. To solve this
problem, the harmonic solution can be expressed by:

[w(x, t), T (x, z, t)] = [w(x), T (x, z)]eiωt. (7)

The preceding governing equations can be put in non-
dimensional forms using the following dimensionless parame-
ters:

(x′, y′, z′, w′) =
(x, y, z, w)

cχ
; M ′T =

MT

T0c3χ3
;

T ′ =
T

T0
; ϕ′ =

ϕ

T0
; ω′ = ωχ; t′ =

t

χ
; α′ =

α

c2χ2
;

where,

c2 =
λ+ 2µ

ρ
; χ =

K

ρcec2
. (8)

Thus, (when the primes have been dropped for convenience)
the above equations in non-dimensional forms can be simpli-
fied by:

I
∂4w

∂x4
+

γT0
λ+ 2µ

∂2MT

∂x2
− ω2Aw = 0; (9)

∂2ϕ

∂x2
+
∂2ϕ

∂z2
=

−ω2

ε− αω2 + iω
(ϕ− γ

ρce
z
∂2w

∂x2
). (10)

2.1. Application
We suppose that the material is initially at rest. At refer-

ence temperature, the undisturbed state has been maintained.
Therefore, one obtains the equation:

w(x, 0) =
∂w(x, 0)

∂t
= 0;

ϕ(x, z, 0) =
∂ϕ(x, z, 0)

∂t
= 0. (11)

These conditions are completed by considering that the two
ends of the nanoscale are simply supported. Thus, the bound-
ary conditions can be written by:

w(0, t) = w(L, t) = 0;

∂2w(0, t)

∂x2
=
∂2w(L, t)

∂x2
= 0. (12)

We consider the case of there is no flow of heat across the
lower and upper surfaces of the nanobeam, which gives:

∂ϕ(x,−h2 , 0)
∂z

=
∂ϕ(x, h2 , 0)

∂z
= 0. (13)

2.2. Solution Along Thickness Direction
We follow the same procedures.46 Noting that temperature

gradients in the plane of the cross section along z direction
are much larger than those along the x direction and that no
gradients exist in the y direction, we can replace Eq. (10) by:

∂2ϕ

∂z2
=

−ω2

ε− αω2 + iω
(ϕ− γ

ρce
z
∂2w

∂x2
); (14)

where ε = K∗

ρcec2
because there is no flow of heat across the

lower and upper surfaces of the beam. Then the general solu-
tion of Eq. (14) takes the form:

ϕ(x, z) =
γ

ρce
(z − sin(pz)

pcos(ph2 )
)
∂2w

∂x2
; (15)

where p =
√

ω2

ε−αω2+iω . Substituting Eqs. (15) and (6) with
Eqs. (4) and (8) in Eq. (10), we get:

Dω
∂4w

∂x4
− ω2w = 0; (16)

whereDω = I
A (1+εT [(1+(1+αp2)f(ω))]), εT = γ2T0

ρce(λ+2µ)

and f(ω) = 24
ρ3h3 (

ph
2 −tan

ph
2 ). From Eq. (16) we can drive the

frequency of vibration in the presence of the two-temperature
parameter α and the thermoelastic coupling εT :

ωm =
m2π2

L2

√
Dω = ω0

√
1 + εT [1 + (1 + αp2)f(ω)];

(17)
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Figure 2. Non-dimensional frequency ωR versus the length L.

Figure 3. Thermoelastic damping Q−1 versus the length L.

where ω0 = hm2π2

L2
√
12

. For most of the material εT � 1, we can
replace ω with ω0 and f(ω) with f(ω0) to get:

ωm = ω0

√
1 + εT [1 + (1 + αp2)f(ω0)]. (18)

The thermoelastic damping can be expressed by:

Q−1 = 2|ω
m
I

ωmR
|; (19)

where ωmI and ωmR are the imaginary and real parts of fre-
quency ωm, and m is the mode number, which corresponds
to the transcendental equation roots in Eq. (18). The frequency
shift due to thermal variations is defined as:

ωS = |ω
m
R − ω0

ω0
|. (20)

3. NUMERICAL RESULTS AND DISCUSSION
Now, we will propose a numerical example for which com-

putational outcomes are given. For this, gold (Au) has been
taken as the thermoelastic medium for which we take the phys-
ical parameters by the following values:42

λ = 1.98× 1011 Nm−2;

µ = 0.27× 1011 Nm−2;

T0 = 293K;

ρ = 1930 kgm−3;

ce = 130 Jkg−1K−1;

αt = 14.2× 10−6 K−1.

Numerical computations are carried out for two cases, when
h = 0.1 and when 0 < L < 1. The first case is study-
ing how the dimensionless frequency ωR, the thermoelastic

Figure 4. Frequency shift ωS versus the length L.

Figure 5. Non-dimensional frequency ωR versus the length L for different
values of α.

damping Q−1, and the frequency shift ωS vary with various
modes when the parameter of two-temperature (α = 0.01)
remains constant. The second is studying how the dimen-
sionless frequency ωR, the thermoelastic damping Q−1 and
frequency shift ωS vary with various values of parameter of
two-temperature for the second mode. The numerical out-
comes are obtained and graphically presented in Figs. 2–7. Fig-
ure 2 shows the variations of dimensionless frequency ωR ver-
sus the length L for the first four modes when the parameter of
two-temperature (α = 0.01) remains constant. It is observed
that the dimensionless frequency ωR reduces as the length L
increases. Figure 3 exhibits the thermoelastic damping Q−1
versus the length L for the first four modes when the param-
eter of two-temperature (α = 0.01) remains constant. It is
noticed that the thermoelastic damping Q−1 rises initially to
attain the highest peak values before it reduces in order to be-
come ultimately asymptotic with rising L. Figure 4 shows the
behavior of the frequency shift ωS versus length L for the first
four modes when the two-temperature parameter (α = 0.01)
remains constant. It can be deduced that the frequency shift
ωS starts from the maximum value from the first end of the
beam and then decreases rapidly when increasing the length
to zero for large values of length. Figures 5, 6, and 7 show
the variation of the natural frequency ωR, thermoelastic damp-
ing Q−1, and the frequency shift ωS respectively, versus L for
different values of the two-temperature parameter. Thus, im-
portant phenomena are observed that the two-temperature pa-
rameter has a great effect on the distribution of field quantities.

4. CONCLUSIONS

The free vibration analysis of generalized thermoelastic
nanoscale resonators in the context of Green and Naghdis two-
temperature model (2TGNIII) has been carried out. The exact
solutions of frequency shifts, thermoelastic damping, deflec-
tion, and the temperature increment in the nanoscale resonator
have been introduced. The exact solutions obtained here pave
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Figure 6. Thermoelastic damping Q−1 versus the length L for different val-
ues of α.

Figure 7. Frequency shift ωS versus the length L for different values of α.

the way for further investigations in engineering, mathematics,
and science.
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